If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x+100+x^2=0
a = 1; b = 20; c = +100;
Δ = b2-4ac
Δ = 202-4·1·100
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{-20}{2}=-10$
| x/10=(1/9)(342-x) | | 2/3(9x-6)=5/2(6x+4) | | -4m-5=-21 | | -5(-1k-4)=65 | | 48/d=8 | | (4+w)w=270 | | 2x+4x+60=100+20 | | 3(1k-1)=-6 | | 24=m÷6+15 | | 50+x=4(11+x) | | -12t+-36=-36 | | x(x+1)=4(x+2)+10 | | (2x^2+5x-8)(3x^2-6x+2)=0 | | 2(3k+5)=-32 | | 0.141x(100-2x)=x | | 5a+5=7a-15 | | 4(2k-6)=8 | | 5x-(6-6x)=14 | | 2x+4/5+7x-4/10=7 | | 4(x+2=16 | | 54=9x+3 | | 2x-x=x+2 | | 8{3-3n}-7=89 | | 3x-6+2x=-2+1x | | 2(2x+3)+5(x+4)=4(2x+5)+8 | | 4(3k+4)=-56 | | x^2=99-x | | 8n=132 | | x+3/6=7 | | 9k+7+5k=-77 | | (3x+1)-(5x-2)=4•(2x-8) | | 0.4x+115=90 |